GAME PHYSICS - FORMULAS

I. Geometry

Equations of simple structures:

Line through (0, b) with slope a : y = ax + b

Circle with center (a, b) and radius $r: (x - a)^2 + (y - b)^2 = r^2$

Areas and volumes:

Triangle area

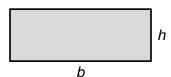
$$A = \frac{1}{2}bh$$

Tetrahedron volume

$$V = \frac{1}{3}Ah$$

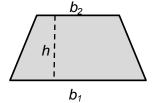
Rectangle area

$$A = bh$$



Trapezoid area

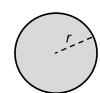
$$A = \frac{b_1 + b_2}{2}h$$



Circle area

$$A = \pi r^2$$

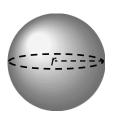
Circumference $C = 2\pi r$



Sphere volume

$$V = \frac{4}{3}\pi r^3$$

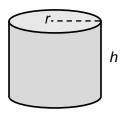
Surface area $A = 4\pi r^2$



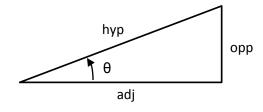
Cylinder volume

$$V = \pi r^2 h$$

Curved surface area $A = 2\pi rh$



II. Trigonometry



$$\sin \theta = \frac{opp}{hyp}$$
 $\cos \theta = \frac{adj}{hyp}$ $\tan \theta = \frac{opp}{adj}$

$$\cos \theta = \frac{adj}{hvp}$$

$$\tan \theta = \frac{opp}{adj}$$

$$\tan x = \frac{\sin x}{\cos x}$$

For a triangle with edges a, b, c with respective opposite angles α , β , γ :

Law of cosines:
$$c^2 = a^2 + b^2 - 2ab \cos \gamma$$

Law of sines:
$$\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}$$

III. Differentiation

VII. A - Functions

f(x)	f'(x)
С	0
x	1
x^n	nx^{n-1}
c^x	$c^x \ln c$
1/x	$-1/x^{2}$
$1/x^n$	$-n/x^{n+1}$
\sqrt{x}	$1/(2\sqrt{x})$
ln x	1/x
$c \log x$	$(^{c}\log e)/x$
e^x	e^x
cos x	$-\sin x$
sin x	cos x
tan x	$1/\cos^2 x$
arcsin x	$1/\sqrt{1-x^2}$
arccos x	$-1/\sqrt{1-x^2}$
arctan x	$1/(1+x^2)$

VII. B - Operations

$$(u+v)' = u' + v'$$

$$(cu)' = cu'$$

$$(uv)' = u'v + uv'$$

$$(1/u)' = -u'/u^{2}$$

$$(u/v)' = (u'v - uv')/v^{2}$$

$$(v(u))' = v'(u) u'$$

$$(e^{u})' = e^{u}u'$$

$$(\ln u)' = u'/u$$

$$(u^{\alpha})' = \alpha u^{\alpha-1}u'$$

$$(\sin u)' = \cos(u) u'$$

$$(\cos u)' = -\sin(u) u'$$

IV. Notations

name	notation	name	notation
mass	m	inertia	I
time	t	time increment	Δt
position	p_o	linear displacement	Δp_o
orientation	θ	angular displacement	$\Delta heta$
linear velocity	v	angular velocity	ω
linear acceleration	а	angular acceleration	α
force	F	torque	τ
volume	V	density	ρ
gravitational constant	$G = 6.673 \times 10^{-11}$	gravitation acceleration	g = 9.81

V. Moments of Inertia

Solid sphere	$I_{xx} = I_{yy} = I_{zz} = \frac{2}{5}mr^2$		
Hollow sphere	$I_{xx} = I_{yy} = I_{zz} = \frac{2}{3}mr^2$		
Solid ellipsoid	$I_{xx} = \frac{1}{5}m(b^2 + c^2)$	$I_{yy} = \frac{1}{5}m(a^2 + c^2)$	$I_{zz} = \frac{1}{5}m(a^2 + b^2)$

Solid box	$I_{xx} = \frac{1}{12}m(h^2 + d^2)$ I_{yy}	$= \frac{1}{12}m(w^2 + d^2)$	$I_{zz} = \frac{1}{12}m(w^2 + h^2)$
Solid cylinder	$I_{xx} = I_{yy} = \frac{1}{12}m(3r^2 + h^2)$	$I_{zz} = \frac{1}{2}mr^2$	
Hollow cylinder	$I_{xx} = I_{yy} = \frac{1}{12}m(6r^2 + h^2)$	$I_{zz} = mr^2$	

VI. Equations

Equations of linear motion	$v(t + \Delta t) = v(t) + a\Delta t$
	$\bar{v} = \frac{v(t + \Delta t) + v(t)}{2}$
	$\Delta p_o = \frac{1}{2} (v(t + \Delta t) + v(t)) \Delta t$
	$\Delta p_o = v(t)\Delta t + \frac{1}{2}a\Delta t^2$
	$v(t + \Delta t)^2 = v(t)^2 + 2a\Delta p_o$
Newton's Second Law of Linear Motion	$F_{net} = m * a$
Newton's Law of Gravitation	$F_g = F_{A \to B} = -F_{B \to A} = G \frac{m_A m_B}{r^2} u_{AB}$
Weight force	W = m * g
Static and kinetic friction forces	$F_{\mathcal{S}} = \mu_{\mathcal{S}} * F_{\mathcal{N}}$ and $F_{\mathcal{K}} = \mu_{\mathcal{K}} * F_{\mathcal{N}}$
Drag forces	$F_{D_{high}} = -\frac{1}{2} * \rho * v^2 * C_d * A \text{ and } F_{D_{low}} = -b * v$
Buoyancy force	$F_B = \rho * g * V$
Spring force	$F_{\rm S} = -K(l-l_0)$
Damper force	$F_C = -C(v_A - v_B)$
Work	$W = F * \Delta p_o$
Translational kinetic energy	$E_K = \frac{1}{2} m v^2$
Work-Energy theorem	$W = \Delta E_K = E_K(t + \Delta t) - E_K(t)$

Potential energy	$E_P = m * g * h$
Linear momentum	p = m * v
Impulse force	$F\Delta t = \Delta p$
Equations of angular motion	$\omega(t + \Delta t) = \omega(t) + \alpha \Delta t$ $\overline{\omega} = \frac{\omega(t + \Delta t) + \omega(t)}{2}$ $\Delta \theta = \frac{1}{2} (\omega(t + \Delta t) + \omega(t)) \Delta t$ $\Delta \theta = \omega(t) \Delta t + \frac{1}{2} \alpha \Delta t^{2}$
	$\omega(t + \Delta t)^2 = \omega(t)^2 + 2\alpha\Delta\theta$
Tangential acceleration	$a_t = \alpha * r$
Centripetal acceleration	$a_n = r\omega^2$
Torque	$\tau = r \times F$
Newton's Second Law of Angular Motion	$ au_{net} = I * lpha$
Rotational kinetic energy	$E_{Kr} = \frac{1}{2} * I * \omega^2$
Conservation of mechanical energy	$E_{Kt}(t + \Delta t) + E_{P}(t + \Delta t) + E_{Kr}(t + \Delta t) = E_{Kt}(t) + E_{P}(t) + E_{Kr}(t) + E_{O}$
Angular momentum	$L = I * \omega$
Impulse torque	$ au \Delta t = \Delta L$
Mass	$m = \int_{V} \rho \ dV$
Center of Mass	$COM = \frac{1}{m} \int_{V} \rho(p) * p dV$
Moments of inertia	$I_{xx} = \int (y^2 + z^2) dm$
	$I_{yy} = \int (z^2 + x^2) dm$
	$I_{zz} = \int (x^2 + y^2) dm$

Products of inertia	$I_{xy} = I_{yx} = \int (xy)dm$
	$I_{xz} = I_{zx} = \int (xz)dm$
	$I_{yz} = I_{zy} = \int (yz)dm$
Parallel axis theorem	$I_v = I_{COM} + mr^2$
PD controller	$\tau = k_p(\theta_d - \theta) + k_v(\dot{\theta}_d - \dot{\theta})$
Midpoint integration method	$p_o(t + \Delta t) = p_o(t) + \Delta t * v\left(t + \frac{\Delta t}{2}, p_o + \frac{\Delta t}{2}v(t, p_o)\right)$
Improved Euler's integration method	$v_1 = v(t) + \Delta t * a(t, v)$
	$v_2 = v(t) + \Delta t * a(t + \Delta t, v_1)$
	$v(t + \Delta t) = \frac{v_1 + v_2}{2}$
Runge-Kutta order 4 integration method	$v_1 = \Delta t * a(t, v(t))$
	$v_2 = \Delta t * a \left(t + \frac{\Delta t}{2}, v(t) + \frac{1}{2}v_1 \right)$
	$v_3 = \Delta t * a \left(t + \frac{\Delta t}{2}, v(t) + \frac{1}{2}v_2 \right)$
	$v_4 = \Delta t * a(t + \Delta t, v(t) + v_3)$
	$v(t + \Delta t) = v(t) + \frac{v_1 + 2v_2 + 2v_3 + v_4}{6}$
Verlet integration method	$p_o(t + \Delta t) = 2p_o(t) - p_o(t - \Delta t) + \Delta t^2 p_o''(t)$
Backward Euler's integration method	$p_o(t + \Delta t) = p_o + \Delta t * v(t + \Delta t)$
Semi-implicit integration method	$v(t + \Delta t) = v(t) + \Delta t * a(t)$
	$p_o(t + \Delta t) = p_o + \Delta t * v(t + \Delta t)$
Coefficient of restitution	$C_R = -\frac{(v_{A+} - v_{B+}) \cdot n}{(v_{A-} - v_{B-}) \cdot n}$
Collision impulse (without rotation)	$j = -(1 + C_r)(v_{A-} - v_{B-}) \cdot n / \left(\frac{1}{m_A} + \frac{1}{m_B}\right)$
Collision impulse (with rotation)	$j = -(1 + C_r)(v_{A-} - v_{B-}) \cdot n / $ $\left(\frac{1}{m_A} + \frac{1}{m_B}\right) + \left[\left(I_A^{-1}(r_A \times n)\right) \times r_A + \left(I_B^{-1}(r_B \times n)\right) \times r_B \right] \cdot n$
Linear velocity resolution	$v_+ = v + \frac{j}{m}n$

Angular velocity resolution	$\omega_{+} = \omega_{-} + I^{-1}(r \times (j * n))$
Stress	$\sigma = F/A$
Strain	$\epsilon = \Delta L/L$
Young's modulus	$Y = \frac{linear \sigma}{linear \epsilon}$
Shear modulus	$S = \frac{planar \sigma}{planar \epsilon}$
Bulk modulus	$B = \frac{volume \ \sigma}{volume \ \epsilon}$
Poisson's ratio	$v = -\frac{d \ transverse \ \sigma}{d \ axial \ \sigma}$